How Does the Surface Activity of Soapwort (Saponaria officinalis L.) Extracts Depend on the Plant Organ?
Ilona Góral
SaponLabs Ltd., Noakowskiego 3, 00-664 Warsaw, Poland
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Search for more papers by this authorIlona Jurek
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Kamil Wojciechowski
SaponLabs Ltd., Noakowskiego 3, 00-664 Warsaw, Poland
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Kamil Wojciechowski
Search for more papers by this authorIlona Góral
SaponLabs Ltd., Noakowskiego 3, 00-664 Warsaw, Poland
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Search for more papers by this authorIlona Jurek
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Kamil Wojciechowski
SaponLabs Ltd., Noakowskiego 3, 00-664 Warsaw, Poland
Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Kamil Wojciechowski
Search for more papers by this authorAbstract
Soapwort (Saponaria officinalis, L) extracts from different plant organs (roots/rhizomes, stems, leaves, and flowers/fruits) were tested because of their ability to lower surface tension at the water/air interface and because of their foaming ability. In addition, surface dilational rheology of the adsorbed layers was assessed. The plant material was collected from May to October 2016 to enable analysis of temporal changes in surface activity of the extracts throughout the same vegetation period. Each organ sample at the given development stage was extracted both fresh (immediately after collecting) and after air drying, to compare the effect of postharvest treatment on surface activity of the extracts. The results show that the latter depends strongly on the development stage, the plant organ, and even the postharvest treatment. During the plant lifecycle, the surface activity of extracts from individual organs varies, probably following the saponin content alterations related to their production and storage for the next season.
Graphical Abstract
Supporting Information
Filename | Description |
---|---|
jsde12198-sup-0001-AppendixS1.docxWord 2007 document , 1.1 MB |
Fig S1 Structures of saponins identified in soapwort. β-D-Xyl - β-D–xylopyranoside, Qui - quillaic acid, α-D-Gal - α-D-galactopyranoside, β-D-Glc – β-D-glucopyranoside, 6-OAc-β-D-Glc - β-D-6-O-acetyl-glucopyranoside, α-L-Rham - α-L–rhamnopyranoside, β-D-Fuc - β-D-fucopyranoside, and β-D-GluA - β-D-glucuronopyranoside [1, 2] Fig. S2. Surface dilational rheology parameters (E', E") obtained for one hour-old adsorption layers in the drop volume oscillation frequency range between 0,005 Hz and 0,1 Hz for the saponin-rich reconstituted extracts obtained by maceration of the commercially available dried rhizomes of soapwort. Fig. S3. Dynamic surface tension (γ = f(t)) results for fresh and air-dried soapwort extracts (all solutions contained 1% of the dry mass of the respective reconstituted extract) Fig. S4a. Surface dilational rheology parameters (E') obtained for one hour-old adsorption layers in the drop volume oscillation frequency range between 0,005 Hz and 0,1 Hz for fresh and air-dried soapwort extracts (all solutions contained 1% of the dry mass of the respective reconstituted extract). Fig. S4b. Surface dilational rheology parameters (E") obtained for one hour-old adsorption layers in the drop volume oscillation frequency range between 0,005 Hz and 0,1 Hz for fresh and air-dried soapwort extracts (all solutions contained 1% of the dry mass of the respective reconstituted extract) |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- Aghel, N., Moghimipour, E., & Raies Dana, A. (2007) Formulation of a herbal shampoo using total saponins of Acanthophyllum squarrosum. Iranian Journal of Pharmaceutical Research, 6: 167–172.
- Alahverdjieva, V. S., Khristov, K., & Exerowa, D. (2008) Correlation between adsorption isotherms, thin liquid films and foam properties of protein/surfactant mixtures: Lysozyme/C10DMPO and lysozyme/SDS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323: 132–138.
- Böttger, S., & Melzig, M. F. (2011) Triterpenoid saponins of the Caryophyllaceae and Illecebraceae family. Phytochemistry Letters, 4: 59–68.
10.1016/j.phytol.2010.08.003 Google Scholar
- Budan, A., Bellenot, D., Freuze, I., Gillmann, L., Chicoteau, P., Richomme, P., & Guilet, D. (2014) Potential of extracts from Saponaria officinalis and Calendula officinalis to modulate in vitro rumen fermentation with respect to their content in saponins. Bioscience, Biotechnology, and Biochemistry, 78: 288–295.
10.1080/09168451.2014.882742 Google Scholar
- Budan, D., Tessier, N., Saunier, M., Gillman, L., Hamelin, J., Chicoteau, P., … Guilet, D. (2013) Effect of several saponin containing plant extracts on rumen fermentation in vitro, Tetrahymena pyriformis and sheep erythrocytes. Journal of Food Agriculture and Environment, 11: 576–582.
- Bukharov, V. G., & Shcherbak, S. P. (1969a) Glycoside of hypsogenic acid from Saponaria officinalis L. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Sciences, 18: 122–123.
10.1007/BF00907606 Google Scholar
- Bukharov, V. G., & Shcherbak, S. P. (1969b) Oligosaccharides of Saponaria officinalis. Chemistry of Natural Compounds, 5: 391–394.
10.1007/BF00568572 Google Scholar
- Bukharov, V. G., & Shcherbak, S. P. (1969c) Triterpene glycosides from Saponaria officinalis. Chemistry of Natural Compounds, 5: 324–326.
10.1007/BF00595069 Google Scholar
- Fainerman, V. B., Lylyk, S. V., Aksenenko, E. V., Petkov, J. T., Yorke, J., & Miller, R. (2010) Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 354: 8–15.
10.1016/j.colsurfa.2009.02.022 Google Scholar
- Fernández-Tejada, A., Tan, D. S., & Gin, D. Y. (2016) Development of improved vaccine adjuvants based on the saponin natural product QS-21 through chemical synthesis. Accounts of Chemical Research, 49: 1741–1756.
- Gevrenova, R., Weng, A., Voutguenne-Nazabadioko, L., Thakur, M., & Doytchinova, I. (2014) Quantitative structure—Activity relationship study on saponins as cytotoxicity enhancers. Letters in Drug Design & Discovery, 12: 166–171.
10.2174/1570180811666140915221432 Google Scholar
- Gilabert-Oriol, R., Thakur, M., Haussmann, K., Niesler, N., Bhargava, C., Görick, C., … Weng, A. (2016) Saponins from Saponaria officinalis L. augment the efficacy of a rituximab-immunotoxin. Planta Medica, 82: 1525–1531.
- Glauert, A. M., Dingle, J. T., & Lucy, J. A. (1962) Action of saponin on biological cell membranes. Nature, 196: 953–955.
- Golemanov, K., Tcholakova, S., Denkov, N., Pelan, E., & Stoyanov, S. D. (2013) Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins. Soft Matter, 9: 5738.
- Gus-Mayer, S., Brunner, H., Schneider-Poetsch, H. A., & Rüdiger, W. (1994) Avenacosidase from oat: purification, sequence analysis and biochemical characterization of a new member of the BGA family of beta-glucosidases. Plant Molecular Biology, 26: 909–921.
- Hofmann, M. J., & Motschmann, H. (2017) A parameter predict ing the foam stability of mixtures of aqueous ionic amphiphile solutions with indifferent electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529: 1024–1029.
10.1016/j.colsurfa.2017.07.016 Google Scholar
- Holmes, S. E., Bachran, C., Fuchs, H., Weng, A., Melzig, M. F., Flavell, S. U., & Flavell, D. J. (2015) Triterpenoid saponin augmention of saporin-based immunotoxin cytotoxicity for human leukaemia and lymphoma cells is partially immunospecific and target molecule dependent. Immunopharmacology and Immunotoxicology, 37: 42–55.
10.3109/08923973.2014.971964 Google Scholar
- Jia, Z., Koike, K., & Nikaido, T. (1998) Major triterpenoid saponins from Saponaria officinalis. Journal of Natural Products, 61: 1368–1373.
- Karakashev, S. I., & Grozdanova, M. V. (2012) Foams and antifoams. Advances in Colloid and Interface Science, 176–177: 1–17.
- Karbaschi, M., Lotfi, M., Krägel, J., Javadi, A., Bastani, D., & Miller, R. (2014) Rheology of interfacial layers. Current Opinion in Colloid & Interface Science, 19: 514–519.
- Koike, K., Jia, Z., & Nikaido, T. (1999) New triterpenoid saponins and sapogenins from Saponaria officinalis. Journal of Natural Products, 62: 1655–1659.
- Loglio, G., Pandolfini, P., Miller, R., Makievski, A. V., Ravera, F., & Liggieri, L. (2001) Drop and bubble shape analysis as a tool for dilational rheological studies of interfacial layers. Studies in Interface Science, 11: 439–483.
10.1016/S1383-7303(01)80038-7 Google Scholar
- Lorent, J., Le Duff, C. S., Quetin-Leclercq, J., & Mingeot-Leclercq, M. P. (2013) Induction of highly curved structures in relation to membrane permeabilization and budding by the triterpenoid saponins, α- and δ-Hederin. The Journal of Biological Chemistry, 288: 14000–14017.
- Lu, Y., Van, D., Deibert, L., Bishop, G., & Balsevich, J. (2015) Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots. Phytochemistry, 113: 108–120.
10.1016/j.phytochem.2014.11.021 Google Scholar
- Makievski, A. V., Fainerman, V. B., Miller, R., Bree, M., Liggieri, L., & Ravera, F. (1997) Determination of equilibrium surface tension values by extrapolation via long time approximations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 122: 269–273.
10.1016/S0927-7757(96)03857-5 Google Scholar
- Maldonado-Valderrama, J., Martín-Molina, A., Martín-Rodriguez, A., Cabrerizo-Vílchez, M. A., Gálvez-Ruiz, M. J., & Langevin, D. (2007) Surface properties and foam stability of protein/surfactant mixtures: Theory and experiment. The Journal of Physical Chemistry, 111: 2715–2723.
- Maldonado-Valderrama, J., Martín-Rodriguez, A., Gálvez-Ruiz, M. J., Miller, R., Langevin, D., & Cabrerizo-Vílchez, M. A. (2008) Foams and emulsions of β-casein examined by interfacial rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323: 116–122.
- Moniuszko-Szajwaj, B., Masullo, M., Kowalczyk, M., Pecio, Ł., Szumacher-Strabel, M., Cieślak, A., … Stochmal, A. (2016) Highly polar triterpenoid saponins from the roots of Saponaria officinalis L. Helvetica Chimica Acta, 99: 347–354.
- Moniuszko-Szajwaj, B., Pecio, L., Kowalczyk, M., Simonet, A. M., Macias, F. A., Szumacher-Strabel, M., … Stochmal, A. (2013) New triterpenoid saponins from the roots of Saponaria officinalis. Natural Product Communications, 8: 1687–1690.
- Morrissey, J. P., & Osbourn, A. E. (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiology and Molecular Biology Reviews, 63: 708–724.
- Moses, T., Papadopoulou, K. K., & Osbourn, A. (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Critical Reviews in Biochemistry and Molecular Biology, 49: 439–462.
- Mustan, F., Pagureva, N., Golemanov, K., Denkov, N. D., Pelan, E. G., & Stoyanov, S. D. (2017) Role of surface properties for the kinetics of bubble Ostwald ripening in saponin-stabilized foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 534: 16–25.
- Orczyk, M., & Wojciechowski, K. (2015) Comparison of the effect of two Quillaja bark saponin extracts on DPPC and DPPC/cholesterol Langmuir monolayers. Colloids Surfaces B Biointerfaces, 136: 291–299.
10.1016/j.colsurfb.2015.09.018 Google Scholar
- Osbourn, A., Goss, R. J. M., & Field, R. A. (2011) The saponins—Polar isoprenoids with important and diverse biological activities. Natural Product Reports, 28: 1261.
- Pagureva, N., Tcholakova, S., Golemanov, K., Denkov, N., Pelan, E., & Stoyanov, S. D. (2016) Surface properties of adsorption layers formed from triterpenoid and steroid saponins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 491: 18–28.
10.1016/j.colsurfa.2015.12.001 Google Scholar
- Pavela, R. (2015) Acaricidal properties of extracts and major furanochromenes from the seeds of Ammi visnaga Linn. against Tetranychus urticae Koch. Industrial Crops and Products, 67: 108–113.
- Pavela, R. (2016) Acaricidal properties of extracts of some medicinal and culinary plants against Tetranychus urticae Koch. Plant Protection Science, 52: 54–63.
- Reale, L., Lai, A., Tucci, A., Poma, A., Faenov, A., Pikuz, T., … Martellucci, S. (2004) Differences in X-ray absorption due to cadmium treatment in Saponaria officinalis leaves. Microscopy Research and Technique, 64: 21–29.
- Sadowska, B., Budzyńska, A., Więckowska-Szakiel, M., Paszkiewicz, M., Stochmal, A., Moniuszko-Szajwaj, B., … Różalska, B. (2014) New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans. Journal of Medical Microbiology, 63: 1076–1086.
- Sanders, M. T., Brown, L. E., Deliyannis, G., & Pearse, M. J. (2005) ISCOMTM-based vaccines: The second decade. Immunology and Cell Biology, 83: 119–128.
- Schulman, J. H., & Rideal, E. K. (1937) Molecular interaction in monolayers: I—Complexes between large molecules. Proceedings of the Royal Society B: Biological Sciences, 122: 29–45.
- Smith, W. S., Baker, E. J., Holmes, S. E., Koster, G., Hunt, A. N., Johnston, D. A., … Flavell, D. J. (2017) Membrane cholesterol is essential for triterpenoid saponin augmentation of a saporin-based immunotoxin directed against CD19 on human lymphoma cells. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1859: 993–1007.
- Smułek, W., Zdarta, A., Pacholak, A., Zgoła-Grześkowiak, A., Marczak, Ł., Jarzębski, M., & Kaczorek, E. (2017) Saponaria officinalis L. extract: Surface active properties and impact on environmental bacterial strains. Colloids Surfaces B Biointerfaces, 150: 209–215.
10.1016/j.colsurfb.2016.11.035 Google Scholar
- Sung, M., Lee, C.-Y., & Lee, S.-Z. (2011) Combined mild soil washing and compost-assisted phytoremediation in treatment of silt loams contaminated with copper, nickel, and chromium. Journal of Hazardous Materials, 190: 744–754.
10.1016/j.jhazmat.2011.03.113 Google Scholar
- Szczechowiak, J., Szumacher-Strabel, M., Stochmal, A., Nadolna, M., Pers-Kamczyc, E., Nowak, A., … Cieślak, A. (2013) Effect of Saponaria officinalis L. Or Panax Ginseng C.A Meyer triterpenoid saponins on ruminal fermentation in vitro/Wpływ saponin triterpenowych Saponaria Officinalis L. Lub Panax Ginseng C.A. Meyer Na Przemiany Zachodzące W Żwaczu W Warunkach in vitro. Annals of Animal Science, 13: 815–827.
- Thakur, M., Weng, A., Pieper, A., Mergel, K., von Mallinckrodt, B., Gilabert-Oriol, R., … Fuchs, H. (2013) Macromolecular interactions of triterpenoids and targeted toxins: Role of saponins charge. International Journal of Biological Macromolecules, 61: 285–294.
10.1016/j.ijbiomac.2013.07.008 Google Scholar
- Wang, J., Nguyen, A. V., & Farrokhpay, S. (2016) Effects of surface rheology and surface potential on foam stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 488: 70–81.
- Windaus, A. (1909) Über die Entgiftung der Saponine durch cholesterin. Berichte der deutschen chemischen Gesellschaft, 42: 238–246.
10.1002/cber.19090420138 Google Scholar
- Wojciechowski, K. (2013) Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces. Colloids Surfaces B Biointerfaces, 108: 95–102.
- Wojciechowski, K., Orczyk, M., Gutberlet, T., & Geue, T. (2016) Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1858: 363–373.
- Wojciechowski, K., Orczyk, M., Gutberlet, T., Trapp, M., Marcinkowski, K., Kobiela, T., & Geue, T. (2014) Unusual penetration of phospholipid mono- and bilayers by Quillaja bark saponin biosurfactant. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1838: 1931–1940.
10.1016/j.bbamem.2014.04.008 Google Scholar
- Zhonghua, J., Koike, K., & Tamotsu, N. (1999) Saponarioside C, the first α-d-galactose containing triterpenoid saponin, and five related compounds from Saponaria officinalis. Journal of Natural Products, 62: 449–453.
10.1021/np980434w Google Scholar