Atherogenic Dyslipidemia: Cardiovascular Risk and Dietary Intervention
Corresponding Author
Kiran Musunuru
- [email protected]
- +1-617-6436186 | Fax: +1-617-6436630
Cardiology Division, Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge St CPZN 5th floor, Boston, MA, 02114 USA
[email protected]Search for more papers by this authorCorresponding Author
Kiran Musunuru
- [email protected]
- +1-617-6436186 | Fax: +1-617-6436630
Cardiology Division, Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge St CPZN 5th floor, Boston, MA, 02114 USA
[email protected]Search for more papers by this authorAbstract
Atherogenic dyslipidemia comprises a triad of increased blood concentrations of small, dense low-density lipoprotein (LDL) particles, decreased high-density lipoprotein (HDL) particles, and increased triglycerides. A typical feature of obesity, the metabolic syndrome, insulin resistance, and type 2 diabetes mellitus, atherogenic dyslipidemia has emerged as an important risk factor for myocardial infarction and cardiovascular disease. A number of genes have now been linked to this pattern of lipoprotein changes. Low-carbohydrate diets appear to have beneficial lipoprotein effects in individuals with atherogenic dyslipidemia, compared to high-carbohydrate diets, whereas the content of total fat or saturated fat in the diet appears to have little effect. Achieving a better understanding of the genetic and dietary influences underlying atherogenic dyslipidemia may provide clues to improved interventions to reduce the risk of cardiovascular disease in high-risk individuals.
References
- 1 National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106: 3143–3421
- 2Genest J Jr, McNamara JR, Ordovas JM, Jenner JL, Silberman SR, Anderson KM, Wilson PW, Salem DN, Schaefer EJ (1992) Lipoprotein cholesterol, apolipoprotein A-I and B and lipoprotein (a) abnormalities in men with premature coronary artery disease. J Am Coll Cardiol 19: 792–802
- 3Krauss RM, Burke DJ (1982) Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res 23: 97–104
- 4Lamarche B, Tchernof A, Moorjani S, Cantin B, Dagenais GR, Lupien PJ, Despres JP (1997) Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Quebec Cardiovascular Study. Circulation 95: 69–75
- 5St-Pierre AC, Ruel IL, Cantin B, Dagenais GR, Bernard PM, Despres JP, Lamarche B (2001) Comparison of various electrophoretic characteristics of LDL particles and their relationship to the risk of ischemic heart disease. Circulation 104: 2295–2299
- 6Berneis KK, Krauss RM (2002) Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 43: 1363–1379
- 7Rosenson RS, Otvos JD, Freedman DS (2002) Relations of lipoprotein subclass levels and low-density lipoprotein size to progression of coronary artery disease in the pravastatin limitation of atherosclerosis in the coronary arteries (PLAC-I) trial. Am J Cardiol 90: 89–94
- 8Asztalos BF, Collins D, Cupples LA, Demissie S, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ (2005) Value of high-density lipoprotein (HDL) subpopulations in predicting recurrent cardiovascular events in the veterans affairs HDL intervention trial. Arterioscler Thromb Vasc Biol 25: 2185–2191
- 9Gofman JW, Young W, Tandy R (1966) Ischemic heart disease, atherosclerosis, and longevity. Circulation 34: 679–697
- 10Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH (1991) A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med 325: 373–381
- 11Sweetnam PM, Bolton CH, Yarnell JW, Bainton D, Baker IA, Elwood PC, Miller NE (1994) Associations of the HDL2 and HDL3 cholesterol subfractions with the development of ischemic heart disease in British men. The Caerphilly and Speedwell collaborative heart disease studies. Circulation 90: 769–774
- 12Fujimoto WY, Bergstrom RW, Boyko EJ, Chen KW, Leonetti DL, Newell-Morris L, Shofer JB, Wahl PW (1999) Visceral adiposity and incident coronary heart disease in Japanese-American men. The 10-year follow-up results of the Seattle Japanese-American community diabetes study. Diabetes Care 22: 1808–1812
- 13Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, Patsch W, Atherosclerosis Risk in Communities Study Group (2001) Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 104: 1108–1113
- 14Austin MA, King MC, Vranizan KM, Krauss RM (1990) Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 82: 495–506
- 15Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM (1993) Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest 92: 141–146
- 16Kathiresan S, Otvos JD, Sullivan LM, Keyes MJ, Schaefer EJ, Wilson PW, D'Agostino RB, Vasan RS, Robins SJ (2006) Increased small low-density lipoprotein particle number: a prominent feature of the metabolic syndrome in the Framingham Heart Study. Circulation 113: 20–29
- 17Blake GJ, Otvos JD, Rifai N, Ridker PM (2002) Low-density lipoprotein particle concentration and size as determined by nuclear magnetic resonance spectroscopy as predictors of cardiovascular disease in women. Circulation 106: 1930–1937
- 18Otvos JD, Collins D, Freedman DS, Shalaurova I, Schaefer EJ, McNamara JR, Bloomfield HE, Robins SJ (2006) Low-density lipoprotein and high-density lipoprotein particle subclasses predict coronary events and are favorably changed by gemfibrozil therapy in the veterans affairs high-density lipoprotein intervention trial. Circulation 113: 1556–1563
- 19Mora S, Szklo M, Otvos JD, Greenland P, Psaty BM, Goff DC Jr, O'Leary DH, Saad MF, Tsai MY, Sharrett AR (2007) LDL particle subclasses, LDL particle size, and carotid atherosclerosis in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 192: 211–217
- 20Kuller L, Arnold A, Tracy R, Otvos J, Burke G, Psaty B, Siscovick D, Freedman DS, Kronmal R (2002) Nuclear magnetic resonance spectroscopy of lipoproteins and risk of coronary heart disease in the cardiovascular health study. Arterioscler Thromb Vasc Biol 22: 1175–1180
- 21Mackey RH, Kuller LH, Sutton-Tyrrell K, Evans RW, Holubkov R, Matthews KA (2002) Lipoprotein subclasses and coronary artery calcium in postmenopausal women from the Healthy Women Study. Am J Cardiol 90: 71i–76i
- 22Cromwell WC, Otvos JD, Keyes MJ, Pencina MJ, Sullivan L, Vasan RS, Wilson PW, D'Agostino RB (2007) LDL particle number and risk of future cardiovascular disease in the Framingham Offspring Study—implications for LDL management. J Clin Lipidol 1: 583–592
- 23Musunuru K, Orho-Melander M, Caulfield MP, Li S, Salameh WA, Reitz RE, Berglund G, Hedblad B, Engstrom G, Williams PT, Kathiresan S, Melander O, Krauss RM (2009) Ion mobility analysis of lipoprotein subfractions identifies three independent axes of cardiovascular risk. Arterioscler Thromb Vasc Biol 29: 1975–1980
- 24Caulfield MP, Li S, Lee G, Blanche PJ, Salameh WA, Benner WH, Reitz RE, Krauss RM (2008) Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem 54: 1307–1316
- 25Rotter JI, Bu X, Cantor RM, Warden CH, Brown J, Gray RJ, Blanche PJ, Krauss RM, Lusis AJ (1996) Multilocus genetic determinants of LDL particle size in coronary artery disease families. Am J Hum Genet 58: 585–594
- 26Allayee H, Aouizerat BE, Cantor RM, Dallinga-Thie GM, Krauss RM, Lanning CD, Rotter JI, Lusis AJ, de Bruin TW (1998) Families with familial combined hyperlipidemia and families enriched for coronary artery disease share genetic determinants for the atherogenic lipoprotein phenotype. Am J Hum Genet 63: 577–585
- 27Austin MA, Talmud PJ, Luong LA, Haddad L, Day IN, Newman B, Edwards KL, Krauss RM, Humphries SE (1998) Candidate-gene studies of the atherogenic lipoprotein phenotype: a sib-pair linkage analysis of DZ women twins. Am J Hum Genet 62: 406–419
- 28Hokanson JE, Brunzell JD, Jarvik GP, Wijsman EM, Austin MA (1999) Linkage of low-density lipoprotein size to the lipoprotein lipase gene in heterozygous lipoprotein lipase deficiency. Am J Hum Genet 64: 608–618
- 29Dart AM, Cooper B (1999) Independent effects of Apo E phenotype and plasma triglyceride on lipoprotein particle sizes in the fasting and postprandial states. Arterioscler Thromb Vasc Biol 19: 2465–2473
- 30Ordovas JM, Cupples LA, Corella D, Otvos JD, Osgood D, Martinez A, Lahoz C, Coltell O, Wilson PW, Schaefer EJ (2000) Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham Study. Arterioscler Thromb Vasc Biol 20: 1323–1329
- 31Talmud PJ, Edwards KL, Turner CM, Newman B, Palmen JM, Humphries SE, Austin MA (2000) Linkage of the cholesteryl ester transfer protein (CETP) gene to LDL particle size: use of a novel tetranucleotide repeat within the CETP promoter. Circulation 101: 2461–2466
- 32Humphries SE, Berglund L, Isasi CR, Otvos JD, Kaluski D, Deckelbaum RJ, Shea S, Talmud PJ (2002) Loci for CETP, LPL, LIPC, and APOC3 affect plasma lipoprotein size and subpopulation distribution in Hispanic and non-Hispanic white subjects: the Columbia University BioMarkers Study. Nutr Metab Cardiovasc Dis 12: 163–172
- 33Skoglund-Andersson C, Ehrenborg E, Fisher RM, Olivecrona G, Hamsten A, Karpe F (2003) Influence of common variants in the CETP, LPL, HL and APO E genes on LDL heterogeneity in healthy, middle-aged men. Atherosclerosis 167: 311–317
- 34Austin MA, Talmud PJ, Farin FM, Nickerson DA, Edwards KL, Leonetti D, McNeely MJ, Viernes HM, Humphries SE, Fujimoto WY (2004) Association of apolipoprotein A5 variants with LDL particle size and triglyceride in Japanese Americans. Biochim Biophys Acta 1688: 1–9
- 35Mar R, Pajukanta P, Allayee H, Groenendijk M, Dallinga-Thie G, Krauss RM, Sinsheimer JS, Cantor RM, de Bruin TW, Lusis AJ (2004) Association of the APOLIPOPROTEIN A1/C3/A4/A5 gene cluster with triglyceride levels and LDL particle size in familial combined hyperlipidemia. Circ Res 94: 993–999
- 36Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE, Kaplan L, Bennett D, Li Y, Tanaka T, Voight BF, Bonnycastle LL, Jackson AU, Crawford G, Surti A, Guiducci C, Burtt NP, Parish S, Clarke R, Zelenika D, Kubalanza KA, Morken MA, Scott LJ, Stringham HM, Galan P, Swift AJ, Kuusisto J, Bergman RN, Sundvall J, Laakso M, Ferrucci L, Scheet P, Sanna S, Uda M, Yang Q, Lunetta KL, Dupuis J, de Bakker PI, O'Donnell CJ, Chambers JC, Kooner JS, Hercberg S, Meneton P, Lakatta EG, Scuteri A, Schlessinger D, Tuomilehto J, Collins FS, Groop L, Altshuler D, Collins R, Lathrop GM, Melander O, Salomaa V, Peltonen L, Orho-Melander M, Ordovas JM, Boehnke M, Abecasis GR, Mohlke KL, Cupples LA (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41: 56–65
- 37Krauss RM, Dreon DM (1995) Low-density-lipoprotein subclasses and response to a low-fat diet in healthy men. Am J Clin Nutr 62: 478S–487S
- 38Dreon DM, Fernstrom HA, Williams PT, Krauss RM (1999) A very low-fat diet is not associated with improved lipoprotein profiles in men with a predominance of large, low-density lipoproteins. Am J Clin Nutr 69: 411–418
- 39Krauss RM (2005) Dietary and genetic probes of atherogenic dyslipidemia. Arterioscler Thromb Vasc Biol 25: 2265–2272
- 40Dreon DM, Fernstrom HA, Williams PT, Krauss RM (1997) LDL subclass patterns and lipoprotein response to a low-fat, high-carbohydrate diet in women. Arterioscler Thromb Vasc Biol 17: 707–714
- 41Krauss RM, Blanche PJ, Rawlings RS, Holl LG, Orr JR, Fernstrom HS (2003) Both low dietary carbohydrate and weight loss reduce expression of atherogenic lipoprotein phenotype. Circulation 108(Suppl IV): IV-784
- 42Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT (2006) Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr 83: 1025–1031
- 43Moreno JA, Pérez-Jiménez F, Marín C, Gómez P, Pérez-Martínez P, Moreno R, Bellido C, Fuentes F, López-Miranda J (2004) The effect of dietary fat on LDL size is influenced by apolipoprotein E genotype in healthy subjects. J Nutr 134: 2517–2522
- 44Kratz M, Gülbahçe E, von Eckardstein A, Cullen P, Cignarella A, Assmann G, Wahrburg U (2002) Dietary mono- and polyunsaturated fatty acids similarly affect LDL size in healthy men and women. J Nutr 132: 715–718
- 45Rivellese AA, Maffettone A, Vessby B, Uusitupa M, Hermansen K, Berglund L, Louheranta A, Meyer BJ, Riccardi G (2003) Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and postprandial lipid metabolism in healthy subjects. Atherosclerosis 167: 149–158
- 46Lai CQ, Corella D, Demissie S, Cupples LA, Adiconis X, Zhu Y, Parnell LD, Tucker KL, Ordovas JM (2006) Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation 113: 2062–2070
- 47Dreon DM, Fernstrom HA, Williams PT, Krauss RM (2000) Reduced LDL particle size in children consuming a very-low-fat diet is related to parental LDL-subclass patterns. Am J Clin Nutr 71: 1611–1616
- 48Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11: 3031–3038
- 49Kaput J, Ordovas JM, Ferguson L, van Ommen B, Rodriguez RL, Allen L, Ames BN, Dawson K, German B, Krauss R, Malyj W, Archer MC, Barnes S, Bartholomew A, Birk R, van Bladeren P, Bradford KJ, Brown KH, Caetano R, Castle D, Chadwick R, Clarke S, Clément K, Cooney CA, Corella D, Manica da Cruz IB, Daniel H, Duster T, Ebbesson SO, Elliott R, Fairweather-Tait S, Felton J, Fenech M, Finley JW, Fogg-Johnson N, Gill-Garrison R, Gibney MJ, Gillies PJ, Gustafsson JA, Hartman Iv JL, He L, Hwang JK, Jais JP, Jang Y, Joost H, Junien C, Kanter M, Kibbe WA, Koletzko B, Korf BR, Kornman K, Krempin DW, Langin D, Lauren DR, Ho Lee J, Leveille GA, Lin SJ, Mathers J, Mayne M, McNabb W, Milner JA, Morgan P, Muller M, Nikolsky Y, van der Ouderaa F, Park T, Pensel N, Perez-Jimenez F, Poutanen K, Roberts M, Saris WH, Schuster G, Shelling AN, Simopoulos AP, Southon S, Tai ES, Towne B, Trayhurn P, Uauy R, Visek WJ, Warden C, Weiss R, Wiencke J, Winkler J, Wolff GL, Zhao-Wilson X, Zucker JD (2005) The case for strategic international alliances to harness nutritional genomics for public and personal health. Br J Nutr 94: 623–632